Computer Science (COMP) 456
Artificial Intelligence (Revision 4)
Revision 4 is closed for registrations, replaced by current version
View previous version
Delivery Mode: Individualized study online
Credits: 3
Area of Study: Science
Prerequisite: COMP 268 or COMP 272 or COMP 306 or COMP 308, or professor approval.
Faculty: Faculty of Science and Technology
Centre: School of Computing and Information Systems
COMP 456 has a Challenge for Credit option.**Note: Students who are concerned about not meeting the prerequisites for this course are encouraged to contact the course coordinator before registering
Overview
The course deals with a broad range of artificial intelligence (AI) topics. It introduces the programming languages for artificial intelligence Prolog and Lisp. The course begins with an introduction to AI applications, predicate calculus, and state space search. Then it delves into some central areas of artificial intelligence such as heuristic strategies, problem solving, knowledge representation, expert systems, and machine learning. Throughout the course, the student will frequently be required to work with examples.
Learning Objectives
After completing the course, the student should be able to
- discuss AI models and areas of application.
- discuss the basic concepts and algorithms for both the symbol-based model and the connectionist model for machine learning.
- discuss and compare different models for knowledge representation.
- outline the basic theory for the concepts of inference rules and unification.
- outline the use of techniques such as minimaxing and alpha–beta pruning.
- explain the basic concepts of knowledge representation (facts, rules, etc.).
- explain the fundamentals of expert systems and apply them for problem solving.
- illustrate the use of predicate calculus in problem solving.
- apply recursion and backtracking in program control.
- apply unification using a pattern-directed search algorithm.
- use graph theory and finite state machines to represent problems.
- implement recursive-based versions of the depth-first, breadth-first, and best-first search algorithms.
- develop AI solutions for problem solving using heuristic strategies.
- develop AI programs and explain the relation between Prolog/Lisp and formal logic.
Outline
COMP 456 consists of the following units:
Unit 1: Artificial Intelligence and Predicate Calculus
An introduction to artificial intelligence and predicate calculus. It presents AI roots and applications, and explains the concepts related to propositional and predicate calculus.
Unit 2: AI Programming Languages: Prolog and Lisp
The main concepts related to the AI programming languages Prolog and Lisp. It presents the syntax, data types, and control mechanisms for both languages.
Unit 3: Graph Theory and Strategies for State Space Searches
Concepts related to graph theory and finite state machines. It presents state space search algorithms and reasoning strategies.
Unit 4: Heuristic Search Algorithms
Heuristic search issues and applications. It presents algorithms such as hill-climbing, dynamic programming, and best-first search.
Unit 5: Control and Implementation of State Space Searches
Issues related to the control and implementation of state space search. It presents recursion-based searching and discusses architectures such as production and blackboard systems.
Unit 6: Knowledge Representation
Concepts and issues related to knowledge representation. It discusses ontologies and agent-based systems.
Unit 7: Expert Systems and Problem Solving
The expert systems model for problem solving. Other models for problem solving such as case-based reasoning, model-based reasoning, and hybrid models are discussed.
Unit 8: Introduction to Machine Learning
An introduction to machine learning. It presents the basic concepts and algorithms for both the symbol-based and connectionist models for machine learning.
Evaluation
To receive credit for COMP 456, you must achieve a course composite grade of at least "D" (50 percent) including a grade of at least 50 percent on the invigilated final examination and an average grade of at least 50 percent on the combined mark of the assignments and project. The weighting of the composite grade is as follows:
Assignment 1 | Assignment 2 | Assignment 3 | Project | Final Exam | Total |
---|---|---|---|---|---|
15% | 15% | 15% | 25% | 30% | 100% |
To learn more about assignments and examinations, please refer to Athabasca University's online Calendar.
Course Materials
Textbook
George F. Luger, 2008. Artificial Intelligence. Structures and Strategies for Complex Problem Solving (6th edition). Addison Wesley. ISBN 978-0-321-54589-3.
Supplementary Reading
George F. Luger, 2008. AI Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java (6th edition). Addison Wesley. ISBN 978-0-13-607047-4.
Ben Coppin, 2004. Artificial Intelligence Illuminated. Jones & Bartlett Learning. ISBN 978-0-7637-3230-1. (This title is available as an e-book through Athabasca Library Services.)
Other material
The remainder of the learning materials for COMP 456 is distributed in electronic format in the course learning environment. Additional supporting materials of interest to COMP 456 students may occasionally be made available.
Special Course Features
COMP 456 is offered online and can be completed at the student's workplace or home. Students are required to acquire their own version of a Prolog compiler (the exact version will be determined by the course tutor).
Challenge for Credit Course Overview
The Challenge for Credit process allows students to demonstrate that they have acquired a command of the general subject matter, knowledge, intellectual and/or other skills that would normally be found in a university level course.
Full information for the Challenge for Credit can be found in the Undergraduate Calendar.
- Undergraduate Challenge for Credit Policy
- Undergraduate Challenge for Credit Procedures
Challenge Evaluation
To receive credit for the COMP 456 challenge, you must achieve a grade of at least “D” (50 per cent) on the examination and 50 percent on the project.
Challenge Project | Challenge Exam | Total |
---|---|---|
50% | 50% | 100% |
Undergraduate Challenge for Credit Course Registration Form
Athabasca University reserves the right to amend course outlines occasionally and without notice. Courses offered by other delivery methods may vary from their individualized-study counterparts.
Opened in Revision 4, January 9, 2014.
View previous version