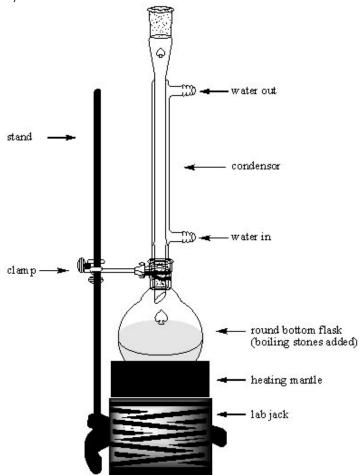
Chemistry 360 Organic Chemistry II

Pre-lab questions


Experiment 10 Prelab Questions

Lab Safety

- 1. What are the hazards of working with concentrated acids like glacial acetic acid and sulfuric acid?
 - a) They are both extremely flammable
 - b) They are only mildly corrosive and no significant precautions are needed
 - c) Boiling these highly corrosive acids increases the danger to the experimenter, especially if the reaction flask should crack and break during heating

Equipment Preparation

- 2. Why must the condenser be 'clean and dry' prior to use?
 - a) Clean and dry glassware automatically guarantees a higher yield
 - b) Water is a by-product of the reaction and having 'wet glassware' will slow the reaction down
 - c) Chemists are just neat
- 3. The following diagram for the 'reflux apparatus' used in Experiment 10 is correctly labelled.
 - a) True
 - b) false

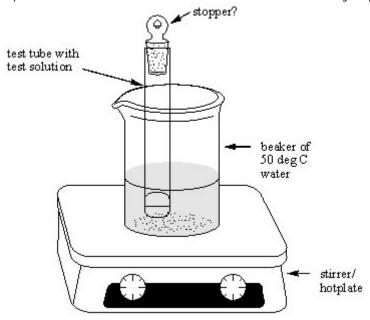
Reagent Preparation

- 4. What are the two starting reagents used in a Fisher Esterification?
 - a) carboxylic acid and a ketone
 - b) alcohol and an ester
 - c) alcohol and a carboxylic acid
 - d) carboxylic acid and an ester

Reaction

- 5. Is the Fisher esterification reaction reversible?
 - a) yes
 - b) no
- 6. How long must you 'reflux the reaction' in order to maximize the amount of product formed?
 - a) 20 min.
 - b) 20-40 min.
 - c) 60 min. or more (The longer the better!)
- 7. What acts as the nucleophile (Nu), and what acts as the electrophile (E) in this reaction?
 - a) Nu = sulphuric acid, E = acetic acid
 - b) Nu = isoamyl alcohol, E = acetic acid (protonated form)
 - c) Nu = isoamyl alcohol, E = acetic acid
 - d) Nu = acetic acid, E = isoamyl acetate

Reaction Workup


- 8. What gas is evolved during the reaction workup phase, when you wash the crude ester with 5% Na₂CO₃ (Procedure step C-5)?
 - a) $H_{2(g)}$
 - b) $N_{2(g)}$
 - c) $O_{2(g)}$
 - d) $CO_{2(g)}$

- 9. How is the ester product purified and characterized?
 - a) Yield, refractive index, % yield, infrared spectral analysis
 - b) Boiling point, refractive index, and infrared spectral analysis
 - c) Yield, boiling point, refractive index, % yield, and infrared spectral analysis
- 10. What major differences in absorption bands would you expect to see in the infrared spectra of isoamyl alcohol, and isoamyl acetate, the ester product?
 - a) Broad 3300 cm⁻¹ absorption for alcohol, sharp ~1740 cm⁻¹ C=O of carbonyl in the ester
 - b) Sharp ~2900 cm⁻¹ absorption(s) for sp³ C-H, no ~2900 cm⁻¹ absorption for sp³ C-H in ester.
 - c) Sharp 3300 cm⁻¹ absorption for alcohol, broad ~1740 cm⁻¹ C=O of carbonyl in the ester.
 - d) Sharp ~1200 cm⁻¹ absorption for C-O of alcohol, none for the ester

Experiment 11 Prelab Questions:

Lab Safety

- 1. Should you stopper the test tubes prior to heating the tubes in the Ethanolic Silver Nitrate and Sodium Iodide/Acetone Tests?
 - a) Yes. You must stopper the test tubes to prevent evaporation of the test compound
 - b) No. You should never heat closed vessel as it may explode!

Equipment Preparation

- 2. Should the test tubes used in this experiment be clean and dry prior to use?
 - a) ves
 - b) no

Reagent Preparation

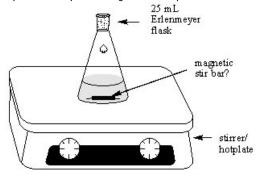
- 3. What oxidizing agent is used to detect primary and secondary alcohols, but not tertiary alcohols?
 - a) sulphuric acid
 - b) sodium dichromate
 - c) mixture of sulphuric acid and sodium dichromate
 - d) Lucas reagent

Reaction

- 4. What is the organic product of the reaction of Lucas reagent with an alcohol?
 - a) ketone
 - b) silver halide
 - c) water
 - d) alkyl halide
- 5. What type of alcohol would be positive in both the Dichromate and Lucas Reagent tests?
 - a. phenol
 - b) primary
 - c) secondary
 - d) tertiary
- 6. $S_N 1$ stands for?
 - a) substitution nucleophilic unimolecular
 - b) substitution nucleophilic bimolecular
 - c) substitution nucleophilic first
- 7. $S_N 2$ stands for?
 - a) substitution nucleophilic unimolecular
 - b) substitution nucleophilic bimolecular
 - c) substitution nucleophilic second
- 8. Why is the silver nitrate test a good one to observe S_NI reaction mechanism behaviour?
 - a) A positive reaction shows a change of color and is easily distinguished from a negative reaction
 - b) precipitates that form are easily seen in positive tests
 - c) the gas produced is easily seen in positive tests
- 9. Why is the sodium iodide in acetone test a good one to observe S_N2 reaction mechanism behaviour?
 - A positive reaction shows a change of color and is easily distinguished from a negative reaction
 - b) precipitates that form are easily seen in positive tests
 - c) the gas produced is easily seen in positive tests

Cleanup

- 10. What should be done with the completed test solutions?
 - a) they should be rinsed into the Halogentated organic waste container
 - b) they can be rinsed down the drain
 - c) store them in the fumehood


Experiment 12 Prelab Questions:

Lab Safety

- Sodium borohydride (NaBH₄) is much safer to use than lithium aluminium hydride (LiAlH₄)?
 - a) yes
 - b) no
 - c) This statement is false. They are both safe
 - d) This statement is false. They are both highly dangerous reagents!

Equipment Preparation

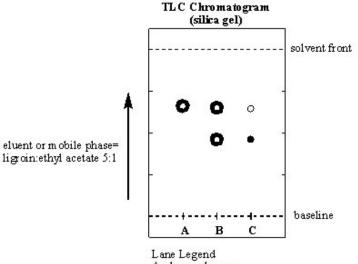
- 2. Why must you place a magnetic stir bar into the reaction vessel and use a stir plate for this reaction?
 - a) for the reaction to occur to its fullest extent, the reagents need to be continuously mixed
 - b) the magnetic stir bar serves as a site for crystal nucleation
 - c) to keep the crystalline product from settling to the bottom of the flask

Reagent Preparation

- 3. Why must you prepare the two main reagents, sodium borohydride and benzophenone, separately and then mix them together?
 - a) as a safety precaution so as to avoid an uncontrolled premature reaction
 - b) the two reagents are not miscible
 - c) you can only do one thing at a time in a chemistry lab

Reaction

- 4. Why do you add the sodium borohydride slowly to the benzophenone?
 - a) to avoid spilling the reagent
 - b) sodium borohydride is very difficult to handle
 - c) as a safety precaution; to control the rate of the exothermic reaction


- 5. What is the purpose of adding the hydrochloric acid/ice in the procedure step 5?
 - a) To dilute and lower the pH of the mixture and thereby prevent product precipitation
 - b) To decompose the excess sodium borohydride, and protonate the alcohol moiety of the final product
 - c) To prevent the decomposition of the sodium borohydride
- 6. Should an EreInmeyer flask be used as the vessel to recrystallize the final product, or a beaker?
 - a) There is no advantage. Either one could be used

- b) Erlenmeyer flask. The narrower neck of the Erlenmeyer flask acts like a condenser and prevents the solvent from evaporating too quickly. Also a flask can eventually be sealed with a stopper while crystal growth is occurring.
- c) Beaker. A beaker is easier to add solvent to and the recrystallized product is easier to recover from a beaker.
- 7. Why is hexane used as the recrystallization solvent?
 - a) because diphenylmethanol is soluble in hot hexane and insoluble in cold hexane
 - b) because diphenylmethanol is insoluble in hot hexane and isoluble in cold hexane
 - c) because it is the only solvent available

- 8. What is the purpose of performing TLC on the crude and recrystallized product, and benzophenone?
 - a) To compare and determine the purity of the final product
 - b) To measure the yield of the final product
 - c) To purify the final product
- 9. Does the TLC sketch shown here indicate the product diphenylmethanol to be pure or impure after recrystallization?

- A= benzophenone
- B= impure diphenylmethanol
- C= recrystallized diphenylmethanol
- 10. What major differences in absorption bands would you expect to see in the infrared spectra of benzophenone, and diphenylmethanol, the alcohol product?
 - a) sharp ~1710 cm⁻¹ C=O of carbonyl in the ketone, broad 3300 cm⁻¹ absorption for alcohol
 - b) broad ~1740 cm⁻¹ C=O of carbonyl in the ketone, sharp 3300 cm⁻¹ absorption for alcohol
 - c) Sharp ~1200 cm⁻¹ absorption for C-O for the ketone, not present for the alcohol

Experiment 13 Prelab Questions

Lab Safety

- 1. What is the major danger of using 95% ethanol?
 - a) It is corrosive
 - b) It is flammable
 - c) It is an oxidizer

Equipment Preparation

- 2. A stirrer/hot plate is used in this experiment in order to:
 - d) continuously mix the reagents and allow the reaction to occur to its fullest extent
 - e) the magnetic stir bar serves as a site for crystal nucleation
 - f) to keep the crystalline product from settling to the bottom of the flask

Reagent Preparation

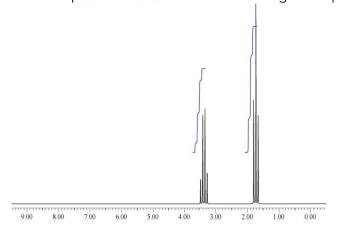
- 3. How do you use the molar mass (MM, g/mol) and density (d, g/mL) of your starting aldehyde or ketone to determine the volume amount of reagent to add (mL) to the reaction, from knowing only the number of moles to use?
 - a) Moles reagent to use is divided by the MM = grams reagent, divided by the density = mL of reagent to use, i.e., (mol / MM)/d = mL
 - b) Moles reagent to use multiplied by the MM = grams reagent, divided by the density = mL of reagent to use, i.e., (mol × MM)/d = mL
 - c) Moles reagent to use divided by the MM = grams of reagent, multiplied by the density = mL of reagent to use, i.e., $(mol/MM) \times d = mL$
- 4. What is the purpose of adding the reagent 95% ethanol (in water) to the reaction mixture of the ketone and aldehyde?
 - a) 95% ethanol is the solvent for the reaction
 - b) 95% ethanol prevents unwanted side reactions
 - c) 95% ethanol reacts with sodium hydroxide to form sodium ethoxide, which is the base catalyst for the reaction

Reaction

- 5. The aldol condensation is used by synthetic chemists:
 - a) because it is a reversible reaction
 - b) because it is non-reversible reaction
 - c) to form a new carbon-carbon bond

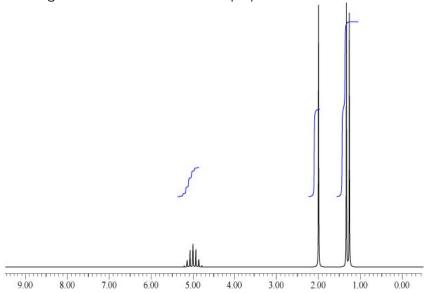
- 6. Will your product be essentially pure after cooling the flask in ice in Step 2 of the procedure?
 - a) yes
 - b) no

- 7. Will your product be essentially pure after washing your product with ice cold 95% ethanol, ice cold 95% ethanol + 4% acetic acid and again with ice cold 95% ethanol in Step 3 of the procedure?
 - a) yes
 - b) no
- 8. Why must the washing solutions be ice-cold in Step 3 of the procedure?
 - a) to prevent dissolving the product, which is more soluble in warm solvent than cold
 - b) to keep the reaction from warming up
 - c) to prevent unwanted side reactions
- 9. How will you know which solvent (95% ethanol or toluene) is more suitable for the recrystallization of your product?
 - a) the chosen solvent will dissolve less crystals when hot, and form more crystals when cold
 - b) the chosen solvent will dissolve more crystals when hot, and form more crystals when cold
 - c) the chosen solvent will dissolve less crystals when hot, and form less crystals when cold

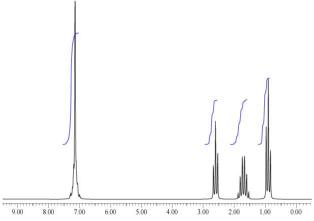

- 10. What reason(s) may help to explain a low percentage yield for your aldol condensation reaction
 - a) the reagents where incorrectly measured
 - b) all the washing steps resulted in the loss of some product, even when ice cold solvents were used
 - c) the chosen recrystallization solvent still kept some of the product dissolved
 - d) all of the above

Experiment 14 Prelab Questions:

- 1. ¹H-NMR is an abbreviation meaning:
 - a) nuclear magnetic resonance spectroscopy
 - b) proton nuclear magnetic resonance spectroscopy
 - c) carbon 13 nuclear magnetic resonance spectroscopy
- 2. What types of information are to be found in a 1H-NMR spectrum?
 - a) chemical shift and multiplicity (splitting patterns)
 - b) chemical shift, number of equivalent hydrogens, and the multiplicity
 - c) chemical shift, number of equivalent hydrogens, multiplicity, and the number of neighbouring hydrogens
 - d) chemical shift, number of equivalent hydrogens, multiplicity, the number of neighbouring hydrogens, and the potential signal assignment (after consulting the Shifts for Various Functional Groups table.
- 3. If you know the chemical formula of your unknown, the 'degrees of unsaturation' calculation (deg Unsaturation . = nC + 1 + 1/2N 1/2nH 1/2nX) helps you to:
 - a) determine the number of 'equivalent double bonds' present in your unknown (e.g., alkene = 1, alkyne = 2, cylcoalkane = 1, benzene ring = 4)
 - b) determine the functional groups present in the unknown
 - c) determine the structure of your unknown
- 4. Chemical shifts are the result of 'shielding' and 'deshielding' in the environment the proton finds around it.
 - a) true
 - b) false
- 5. The N=n+1 rule is used to determine the number of neighbouring H
 - a) true
 - b) false
- 6. What is the purpose of adding tetramethylsilane (TMS) to a ¹H-NMR sample prior to determining its spectrum?
 - a) to give an example of a highly shielded hydrogen environment
 - b) to serve as a reference standard
 - c) to serve as a blank


- 7. A very common splitting pattern seen in a ¹H-NMR spectrum (see Unknown X spectrum below) is the '2H quartet coupled to a 3H triplet'. Which of the following molecular fragments does this represent?
 - a. a methyl group
 - b. an ethyl group
 - c. an isopropyl group
 - d. a *tert*-butyl group

¹H-NMR spectrum for Unknown X showing a '2H quartet coupled to a 3H triplet'


- 8. Another very common splitting pattern seen in a ¹H-NMR spectrum (see Unknown Y spectrum below) is a '1H septet coupled to a 6H doublet'. Which of the following molecular fragments does this usually represent?
 - a) a methyl group
 - b) an ethyl group
 - c) an isopropyl group
 - d) a *tert*-butyl group

¹H-NMR spectrum for Unknown Y showing a '1H septet coupled to a 6H doublet' (ignore the singlet also shown in this example)

- 9. The following $^1\text{H-NMR}$ spectrum for Unknown Z shows Unknown Z to have an aromatic ring.
 - a) true
 - b) false

¹H-NMR spectrum for Unknown Z

- 10. The hardest part in determining the structure of an unknown from your NMR data, is usually the final assembly of all the fragments.
 - a) true
 - b) false

Experiment 15 Prelab Questions

Lab Safety

- 1. What danger exists with the Tollen's reagent?
 - a) The silver mirror that forms is high reflective to light
 - b) ammonia used is very corrosive
 - c) Tollen's reagent decomposes on standing to an explosive substance

Equipment Preparation

- 2. Test tube size is very important in performing functional group tests?
 - a) true. The test tube must not become so filled with reagent and test substance, that it becomes difficult to mix
 - b) true. The test tube must be completely filled with the reagent and test substance, so that it can only be mixed by stoppering and inverting the test tube
 - c) false

Reagent Preparation

- 3. What should the Tollen's reagent appear like after the addition of the 1.0 M ammonium hydroxide?
 - a) a brownish colored precipitate in solution
 - b) a silver colored solution
 - c) a clear and colorless solution

Reaction(s)

- 4. What does the Brady's Test detect?
 - a) methyl ketone groups in aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes only
 - d) ketones only
- 5. What does the Tollens' Test detect?
 - a) methyl ketone groups of aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes only
 - d) ketones only
- 6. What does the Schiff's Test detect?
 - a) methyl ketone groups of aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes and aldehyde impurities mostly
 - d) ketones only

- 7. What does the lodoform Test Detect?
 - a) methyl ketone groups of aldehydes and ketones
 - b) carbonyl groups of aldehydes and ketones
 - c) aldehydes only
 - d) ketones only
- 8. Which of the following compounds gives a positive reaction to Brady's, Tollens', and Schiff's Tests above?
 - a) benzaldehyde
 - b) cylcopentanone
 - c) acetone
- 9. Of the following compounds, which does not react in any of the four above tests (Brady's, Tollens', Schiff's, and Iodoform Tests):
 - a) an ethyl ketone
 - b) cinnamaldehyde
 - c) ethyl benzoate
 - d) cyclohexanone
- 10. What must be done to the unused Tollens' reagent and any unreacted Tollens' test samples:
 - a) rinse the reagent into the General Organic waste container
 - b) dilute with water
 - c) add concentrated nitric acid to decompose the Tollens' reagent
 - d) leave reagent in the hood for someone else to find

Experiment 16 Prelab Questions

Lab Safety

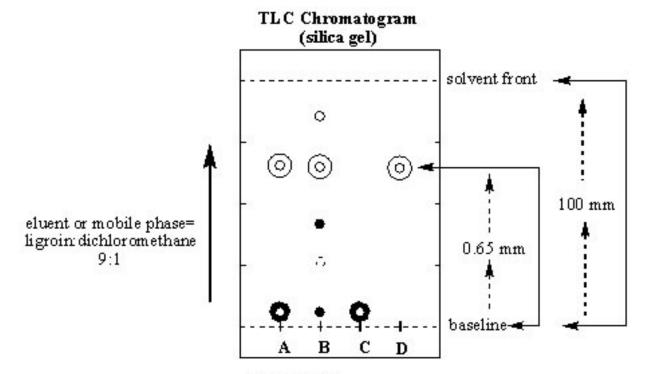
- 1. A procedureal flowchart is **highly recommended** for performing this experiment.
 - a) true
 - b) false
- 2. No source of flame is allowed in this experiment because of the use of diethyl ether.
 - a) true
 - b) false

Equipment Preparation

- Dry glassware is essential for the Grignard reaction to work because:
 - a) the Grignard reaction is easily contaminated with water
 - b) the Grignard reagent is very moisture sensitive
 - c) the Grignard reagent is very stable

Reagent Preparation

- 4. What is the purpose of the magnesium and diethyl ether used in the Grignard Reaction?
 - a) magnesium reacts with bromobenzene to form the alcohol product, triphenylmethanol, and diethyl ether is the solvent which keeps the product in solution
 - b) magnesium reacts with ethyl benzoate to form the Grignard reagent, and diethyl ether is the solvent for the reaction, which also helps to stabilize the Grignard reagent
 - c) magnesium reacts with bromobenzene to form the Grignard reagent, and diethyl ether is the solvent for the reaction, which also helps to stabilize the Grignard reagent


Reaction

- 5. Which of the following are the limitations of the Grignard Reaction?
 - a) the Grignard reagent is only useful in preparing tertiary alcohols, and it is moisture sensitive
 - b) the Grignard reagent can only be formed from certain organohalides, and it is moisture, and oxygen sensitive
 - c) the Grignard reagent can only be formed from certain organohalides, and it is oxygen sensitive

- 6. What is the purpose of using 50mL 2M H₂SO₄ in Part C Step 1?
 - a) To dilute and lower the pH of the mixture and thereby prevent product precipitation
 - b) To protonate the alcohol moiety of the final product
 - c) To prevent the decomposition of the Grignard reagent
- 7. What layer will your product be in after addition of the diethyl ether in Part C Step 3?
 - a) the aqueous layer
 - b) the ether layer
- 8. What is the purpose of washing the organic layer with water in Part C Step 6?
 - a) to remove water soluble impurities
 - b) to remove organic impurities
 - c) to extract the product into the aqueous layer
 - d) to 'pre-dry' the organic layer, thereby removing the bulk of the water from the ether

- 9. What is the purpose of washing the organic layer with brine in the same Part C Step 6?
 - a) To remove water soluble impurities
 - b) To remove organic impurities
 - c) To 'pre-dry' the organic layer, thereby removing the bulk of the water from the ether
 - d) To remove all water from the organic layer

- 10. What is the Retention Factor or R_f of pure biphenyl in Lane D in the TLC sketch shown below:
 - a) 1.54
 - b) 0.65
 - c) 0.154
 - d) 0.065

Lane Legend

A= crude triphenylm ethanol

B= mother liquor

C= recrystallized triphenylmethanol

D= pure biphenyl

Experiment 17 Prelab Questions

Lab Safety

- 1. In Part A, the reduction of 4-nitrotoluene, a dangerous gas, HCl, must be trapped using a:
 - a) vacuum take off adaptor
 - b) sodium hydroxide acid-vapour gas trap
 - c) calcium chloride

Equipment Preparation

- 2. In Part C, Step 8, the reaction mixture must be cooled in an ice bath prior to suction filtration because:
 - a) the product is least soluble in ice cold water
 - b) it will prevent dangerous side reactions from occuring
 - c) it will stop the reaction between sodium hydrogen sulfite and manganese dioxide

Reagent Preparation

- 3. In Part C, Step 3, the reason for splitting the potassium permanganate into 10 equal portions is:
 - a) the potassium permanganate is not very soluble in hot water and therefore cannot be all added at once
 - b) the potassium permanganate is to be carefully added in portions so as to control the rate of the oxidation reaction
 - c) to test the student's ability to follow procedures

Reaction

- 4. In Part C, the oxidation of 4'-methylacetanilide, the oxidizing agent is:
 - a) magnesium sulphate heptahydrate
 - b) 4'methylacetanilide
 - c) potassium permanganate
 - d) 4-acetamidobenzoic acid
- 5. In Part E, what is the purpose of the 100% ethanol used in Step 2.
 - a) it is the solvent for the Fisher esterification reaction
 - b) it is both the solvent and co-substrate for the Fisher esterification reaction
 - c) since benzocaine is highly soluble in ethanol, it is used so that the final product will not precipitate from the reaction mixture

- In Part D, the 4-acetamidobenzoic acid is hydrolyzed by the addition of _____?
 - a) dilute hydrochloric acid
 - b) water
 - c) water and 6.0 M hydrochloric acid

- 7. In Part D, what is hydrolyzed, i.e., what is removed from the starting reagent to form the 4-aminobenzoic acid product?
 - a) acetic acid
 - b) ethanol
 - c) water
- 8. During a reflux, what constant states are maintained while the reaction proceeds? (there are 3)
 - a) homogeneity, temperature, and volume of the solvent
 - b) homogeneity, temperature, and volume of the starting reagent
 - c) moles of reagent, moles of product, and temperature of the reaction

- 9. Why should you not bother to perform a melting point on 4-acetamidobenzoic acid?
 - a) the melting point of this compound will be to low to record accurately
 - b) the compound is very unstable and cannot be heated
 - c) the melting point of this compound will be to high to read for the thermometers provided in this course to read
 - d) the melting point of this compound is unknown
- 10. If you obtained % yields of 85%, 65% and 90% in a three-step synthesis, what is the overall % yield?
 - a) 240%
 - b) 50%
 - c) 145%
 - d) 18%

Athabasca University CHEM360 Organic Chemistry II PRELAB ANSWERS

Questio	Exp.10	Exp. 11	Exp. 12	Exp. 13	Exp.14	Exp. 15	Exp. 16	Exp. 17
n								
1	С	b	а	b	b	С	а	b
2	Ь	а	а	а	d	а	а	а
3	а	С	а	С	а	С	b	b
4	C	d	С	С	а	b	С	С
5	а	С	b	С	а	С	b	b
6	С	а	b	b	b	С	b	С
7	۵	b	а	b	b	а	b	а
8	а	b	а	а	С	а	а	а
9	С	b	b	b	а	С	С	С
10	а	а	а	d	а	С	b	b